MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression.
نویسندگان
چکیده
The effects of long-term physical inactivity on the expression of microRNAs involved in the regulation of skeletal muscle mass in humans are largely unknown. MicroRNAs are short, noncoding RNAs that fine-tune target expression through mRNA degradation or by inhibiting protein translation. Intronic to the slow, type I, muscle fiber type genes MYH7 and MYH7b, microRNA-208b and microRNA-499-5p are thought to fine-tune the expression of genes important for muscle growth, such as myostatin. Spinal cord injured humans are characterized by both skeletal muscle atrophy and transformation toward fast-twitch, type II fibers. We determined the expression of microRNA-208b, microRNA-499-5p, and myostatin in human skeletal muscle after complete cervical spinal cord injury. We also determined whether these microRNAs altered myostatin expression in rodent skeletal muscle. A progressive decline in skeletal muscle microRNA-208b and microRNA-499-5p expression occurred in humans during the first year after spinal cord injury and with long-standing spinal cord injury. Expression of myostatin was inversely correlated with microRNA-208b and microRNA-499-5p in human skeletal muscle after spinal cord injury. Overexpression of microRNA-208b in intact mouse skeletal muscle decreased myostatin expression, whereas microRNA-499-5p was without effect. In conclusion, we provide evidence for an inverse relationship between expression of microRNA-208b and its previously validated target myostatin in humans with severe skeletal muscle atrophy. Moreover, we provide direct evidence that microRNA-208b overexpression decreases myostatin gene expression in intact rodent muscle. Our results implicate that microRNA-208b modulates myostatin expression and this may play a role in the regulation of skeletal muscle mass following spinal cord injury.
منابع مشابه
Quality of Life in Patients with Spinal Cord Injury: The Role of Depressed Mood
Background & Aim: Disabilities resulting from road accidents, especially spinal cord injury, which often occur in the early or middle ages of life, cause psychiatric symptoms and worsen the quality of life in these people. The present study aimed to determine the role of depressed mood in the quality of life of patients with spinal cord injury in Guilan Province (in the north of Iran)...
متن کاملMinocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury
Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...
متن کاملDecrease in Cavity Size and Oligodendrocyte Cell Death Using Neurosphere-Derived Oligodendrocyte-Like Cells in Spinal Cord Contusion Model
Background: Oligodendrocyte cell death is among the important features of spinal cord injury, which appears within 15 min and occurs intensely for 4 h after injury, in the rat spinal contusion model. Accordingly, the number of oligodendrocytes progressively reduced within 24 h after injury. Administration of oligodendrocyte-like cells (OLCs) into the lesion area is one of the approaches to coun...
متن کاملThe Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological reports
دوره 3 11 شماره
صفحات -
تاریخ انتشار 2015